Volume 7, Issue 4 (December 2020)                   J. Food Qual. Hazards Control 2020, 7(4): 196-199 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bangieva D, Stratev D, Stoyanchev T. Histamine Level in Freshwater and Marine Fish Sold in Bulgarian Markets. J. Food Qual. Hazards Control. 2020; 7 (4) :196-199
URL: http://jfqhc.ssu.ac.ir/article-1-756-en.html
Department of Food Hygiene and Control, Veterinary Legislation and Management, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria , desislava_bangieva@abv.bg
Abstract:   (137 Views)
Background: Histamine is an essential biogenic amine produced as a result of microbial decomposition of histidine during seafood processing and storage. The objective of this study was to evaluate histamine concentration in freshwater and marine fish marketed in Stara Zagora region, Bulgaria.
Methods: Forty fish samples were purchased from local fish farms and retail stores in Stara Zagora, Bulgaria. Enzyme-Linked Immunosorbent Assay was used to determine histamine levels. The data were processed using GraphPad Software InStat 3.
Results: Histamine was detected in 26 out of 40 (65%) samples, and none of them exceeded the regulatory limit of 200 mg/kg. The average histamine content in marine fish (6.965±3.187 mg/kg) was insignificantly (p>0.05) higher than that in freshwater fish (4.503±1.133 mg/kg).
Conclusion: The results reveal low levels of histamine in freshwater and marine fish indicating their good quality. However, its presence in seafoods remains a major food safety problem that requires permanent regulation of histamine concentration in fish.

DOI: 10.18502/jfqhc.7.4.4848
Full-Text [PDF 292 kb]   (63 Downloads)    
Type of Study: Short communication | Subject: Special
Received: 20/08/17 | Accepted: 20/10/26 | Published: 20/12/24

References
1. Bilgin B., Genccelep H. (2015). Determination of biogenic amines in fish products. Food Science and Biotechnology. 24: 1907-1913. [DOI: 10.1007/s10068-015-0251-4] [DOI:10.1007/s10068-015-0251-4]
2. Cicero A., Cammilleri G., Galluzzo F.G., Calabrese I., Pulvirenti A., Giangrosso G., Cicero N., Cumbo V., Vella A., Macaluso A., Ferrantelli V. (2020). Histamine in fish products randomly collected in Southern Italy: a 6-year study. Journal of Food Protection. 83: 241-248. [DOI: 10.4315/0362-028X.JFP-19-305] [DOI:10.4315/0362-028X.JFP-19-305] [PMID]
3. Comas-Basté O., Luz Latorre-Moratalla M., Sánchez-Pérez S., Teresa Veciana-Nogués M., del Carmen Vidal-Carou M. (2019). Histamine and other biogenic amines in food. From scombroid poisoning to histamine intolerance. Biogenic Amines (IntechOpen). [DOI: 10.5772/intechopen.84333] [DOI:10.5772/intechopen.84333] [PMCID]
4. Duflos G., Inglebert G., Himber C., Degremont S., Lombard B., Brisabois A. (2019). Validation of standard method EN ISO 19343 for the detection and quantification of histamine in fish and fishery products using high-performance liquid chromatography. International Journal of Food Microbiology. 288: 97-101. [DOI: 10.1016/j.ijfoodmicro.2018.07.023] [DOI:10.1016/j.ijfoodmicro.2018.07.023] [PMID]
5. García-Tapia G., Barba-Quintero G., Gallegos-Infante J.A., Aguilar R.P., Ruíz-Cortés J.A., Ramírez J.A. (2013). Influence of physical damage and freezing on histamine concentration and microbiological quality of yellowfin tuna during processing. Food Science and Technology. 33: 463-467. [DOI: 10.1590/ S0101-20612013005000061] [DOI:10.1590/S0101-20612013005000061]
6. Hungerford J.M. (2010). Scombroid poisoning: a review. Toxicon. 56: 231-243. [DOI: 10.1016/j.toxicon.2010.02.006] [DOI:10.1016/j.toxicon.2010.02.006] [PMID]
7. Kordiovská P., Vorlová L., Borkovcová I., Karpíšková R., Buchtová H., Svobodová Z., Křížek M., Vácha F. (2006). The dynamics of biogenic amine formation in muscle tissue of carp (Cyprinus carpio). Czech Journal of Animal Science. 51: 262-270. [DOI: 10.17221/3938-CJAS] [DOI:10.17221/3938-CJAS]
8. Křížek M., Vácha F., Vorlová L., Lukášová J., Cupáková Š. (2004). Biogenic amines in vacuum-packed and nonvacuum-packed flesh of carp (Cyprinus carpio) stored at different temperatures. Food Chemistry. 88: 185-191. [DOI: 10.1016/j. foodchem.2003.12.040] [DOI:10.1016/j.foodchem.2003.12.040]
9. Mejrhit N., Azdad Y., Azdad O., Aarab L. (2018). Determination of histamine levels in commonly consumed fish in the region of Fez: the effect of heating and enzymatic treatments. British Food Journal. 120: 2388-2394. [DOI: 10.1108/BFJ-12-2017-0670] [DOI:10.1108/BFJ-12-2017-0670]
10. Muscarella M., Magro S.L., Campaniello M., Armentano A., Stacchini P. (2013). Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection. Food Control. 31: 211-217. [DOI: 10.1016/j.foodcont.2012.09.013] [DOI:10.1016/j.foodcont.2012.09.013]
11. Papageorgiou M., Lambropoulou D., Morrison C., Kłodzińska E., Namieśnik J., Płotka-Wasylka J. (2018). Literature update of analytical methods for biogenic amines determination in food and beverages. TrAC Trends in Analytical Chemistry. 98: 128-142. [DOI: 10.1016/j.trac.2017.11.001] [DOI:10.1016/j.trac.2017.11.001]
12. Park J.S., Lee C.H., Kwon E.Y., Lee H.J., Kim J.Y., Kim S.H. (2010). Monitoring the contents of biogenic amines in fish and fish products consumed in Korea. Food Control. 21: 1219-1226. [DOI: 10.1016/j.foodcont.2010.02.001] [DOI:10.1016/j.foodcont.2010.02.001]
13. Ruiz-Capillas C., Moral A. (2001). Production of biogenic amines and their potential use as quality control indices for hake (Merluccius merluccius, L.) stored in ice. Journal of Food Science. 66: 1030-1032. [DOI: 10.1111/j.1365-2621.2001. t